
Lab 5: Sea-Level Rise

CEVE 421/521

Fri., Feb. 16

There are two objectives of this lab:

1. To familiarize ourselves with an increasingly complex model of our house-elevation problem
2. To conduct exploratory modeling to understand the implications of different parameter values

and how they affect our decision-making

1 Setup
1.1 The usual
As always:

1. Clone the lab repository to your computer
2. Open the lab repository in VS Code
3. Open the Julia REPL and activate, then instantiate, the lab environment
4. Make sure you can render: quarto render template.qmd in the terminal.

• If you run into issues, try running ] build IJulia in the Julia REPL (] enters the
package manager).

• If you still have issues, try opening up blankfile.py. That should trigger VS Code to
give you the option to install the Python extension, which you should do. Then you
should be able to open a menu in the bottom right of your screen to select which Python
installation you want VS Code to use.

1.2 Load packages

1 using CSV
2 using DataFrames
3 using DataFramesMeta
4 using Distributions
5 using Plots
6 using StatsPlots
7 using Unitful
8

9 Plots.default(; margin=5Plots.mm)

1



1.3 Local package
We’re starting to accumulate a lot of code describing our model. A good way to store this model
is by creating a local package. I have created a package called HouseElevation that contains the
model code. You don’t need to do anything special to install it, and you don’t need to edit the
code, though I’d encourage you to have a look around!

When we work with local packages, it’s common to use another package called Revise. This is a
cool package that will automatically propagate any changes you make to the package to any code
that uses the package. You don’t need to worry about this for now – just load them.

1 using Revise
2 using HouseElevation

2 Building the model
We’ve added a bit of complexity to our model. In this section, we walk through each of the sections
of the model.

2.1 House

Important

We will consider a single house, and will ignore uncertainty in the depth-damage function or
other house parameters

• Neglect uncertainty in depth-damage function
• Consider a single building
• We’re going to put all relevant information into a House object:

– Depth-damage function
– Area
– Cost (USD)
– Elevation relative to gauge
– Metadata

We can create a House as follows – note that we’re using a let...end block to create the House
object. This means that any variables defined inside the block are not available outside the block,
which is a good way to avoid “polluting the global namespace.”

1 house = let
2 haz_fl_dept = CSV.read("data/haz_fl_dept.csv", DataFrame) # read in the file
3 desc = "one story, Contents, fresh water, short duration"
4 row = @rsubset(haz_fl_dept, :Description == desc)[1, :] # select the row I want
5 area = 500u"ft^2"
6 height_above_gauge = 10u"ft"
7 House(
8 row;
9 area=area,

10 height_above_gauge=height_above_gauge,
11 value_usd=250_000,

2



12 )
13 end

We can then use the House object to calculate the damage to the house for a given flood depth. Let’s
convert the damage to dollars by multiplying the fraction (given by our depth-damage function) by
the value of the house. For example:

1 let
2 depths = uconvert.(u"ft", (-7.0u"ft"):(1.0u"inch"):(30.0u"ft"))
3 damages = house.ddf.(depths) ./ 100
4 damages_1000_usd = damages .* house.value_usd ./ 1000
5 scatter(
6 depths,
7 damages_1000_usd;
8 xlabel="Flood Depth",
9 ylabel="Damage (Thousand USD)",

10 label="$(house.description)\n($(house.source))",
11 legend=:bottomright,
12 size=(800, 400),
13 yformatter=:plain, # prevents scientific notation
14 )
15 end

We can also use the House object to calculate the cost of raising the house to a given elevation. We
use the elevation_cost function like this:

1 elevation_cost(house, 10u"ft")

67620.0

and again we can plot this.

3



1 let
2 elevations = 0u"ft":0.25u"ft":14u"ft"
3 costs = [elevation_cost(house, e�) for e� in elevations]
4 scatter(
5 elevations,
6 costs ./ 1_000;
7 xlabel="Elevation",
8 ylabel="Cost (Thousand USD)",
9 label="$(house.description)\n($(house.source))",

10 legend=:bottomright,
11 size=(800, 400),
12 yformatter=:plain, # prevents scientific notation
13 )
14 end

2.2 Sea-level rise

Important

We will sample many different scenarios of sea-level rise

We’re modeling sea-level rise following the approach of Oddo et al. (2017). Essentially, we use five
parameters: 𝑎, 𝑏, 𝑐, 𝑡∗, and 𝑐∗. The local sea-level in year 𝑡 is given by equation 6 of Oddo et al.
(2017):

SLR = 𝑎 + 𝑏(𝑡 − 2000) + 𝑐(𝑡 − 2000)2 + 𝑐∗ 𝕀(𝑡 > 𝑡∗)(𝑡 − 𝑡∗)

The authors note:

4



In this model, the parameters 𝑎, 𝑏, and 𝑐 represent the reasonably well-characterized
process of thermosteric expansion as a second-order polynomial. It also accounts for
more poorly understood processes, including potential abrupt sealevel rise consistent
with sudden changes in ice flow dynamics. Here, 𝑐∗ represents an increase in the rate
of sea-level rise that takes place at some uncertain time, 𝑡∗, in the future.

This is, of course, a highly simplified model. However, the parameters can be calibrated to match
historical sea-level rise (i.e., throwing out any parameter values that don’t match the historical
record) and use a statistical inversion method to estimate the parameters. One could also calibrate
the parameters to match other, more complex, physics-based models. We’ll use Monte Carlo
simulations from Oddo et al. (2017), available on GitHub. These were actually calibrated for the
Netherlands, but we’ll pretend that sea-level rise in your location matches (which – as we know –
it doesn’t).

1 slr_scenarios = let
2 df = CSV.read("data/slr_oddo.csv", DataFrame)
3 [Oddo17SLR(a, b, c, tstar, cstar) for (a, b, c, tstar, cstar) in eachrow(df)]
4 end
5 println("There are $(length(slr_scenarios)) parameter sets")

We can plot these scenarios to get a sense of the range of sea-level rise we might expect.
1 let
2 years = 1900:2150
3 p = plot(;
4 xlabel="Year",
5 ylabel="Mean sea-level (ft)\nwith respect to the year 2000",
6 label="Oddo et al. (2017)",
7 legend=false
8 )
9 for s in rand(slr_scenarios, 250)

10 plot!(p, years, s.(years); color=:lightgrey, alpha=0.5, linewidth=0.5)
11 end
12 p
13 end

5

https://github.com/pcoddo/VanDantzig/blob/master/Model_Versions/Uncertainty_SLR/SLR_Module/Rejection_Sampling/beta/output/array_beta.txt


The key insight you should take from this plot is that uncertainty in future sea level increases over
time!

2.3 Storm surge

Important

We will consider parametric uncertainty in the storm surge

The next component of the model is the storm surge (i.e., the height of the flood above mean
sea-level). We can model the water level at the gauge as the sum of the local sea-level and the
storm surge. We can then model the water level at the house as the water level at the gauge minus
the elevation of the house above the gauge.

We will consider parametric uncertainty in the storm surge. From lab 3, you should have a
GeneralizedExtremeValue distribution for the storm surge. We can then sample parameters
from a range centered on this distribution. For example, in the example for lab 3 we had
GeneralizedExtremeValue(5, 1.5, 0.1). We can use this function to create a distribution for
the storm surge.

1 function draw_surge_distribution()
2 � = rand(Normal(5, 1))
3 � = rand(Exponential(1.5))
4 � = rand(Normal(0.1, 0.05))
5 GeneralizedExtremeValue(�, �, �)
6 end

draw_surge_distribution (generic function with 1 method)

We can then call this function many times to get many different distributions for the storm surge.

6



For example,
1 [draw_surge_distribution() for _ in 1:1000]

Important

This is NOT statistical estimation. We are not saying anything at all about whether these
parameters are consistent with observations. In fact, even when parameters are uncertain,
sampling around a point estimate in this manner usually produces lots of parameter values
that are highly implausible. Here, we are just exploring the implications of different parameter
values. Building a better model for storm surge is a great idea for your final project!

2.4 Discount rate

Important

We will consider parametric uncertainty in the discount rate.

The discount rate is an important economic parameter in our NPV analysis. There are elements
of discounting that are perhaps not random (e.g., how much do you value the future versus the
present?) while there are other elements that are very much random (what is the opportunity cost
of spending money now?) We will model this by treating the discount rate as a random variable,
but more sophisticated analyses are possible. We can use the following function

1 function draw_discount_rate()
2 return rand(Normal(0.04, 0.02))
3 end

Note that we are now defining the discount rate as a proportion (from 0 to 1) rather than a
percentage (from 0 to 100).

2.5 Running a simulation
In the notation we’ve seen in class, we have a system model 𝑓 that takes in a state of the world s,
an action 𝑎, and outputs some metric or metrics. I’ve reproduced this in our model, adding one
extra piece: a ModelParams object that contains all the parameters of the model that don’t change
from one simulation to the next.

In our model, the ModelParams are the house characteristics (area, value, and depth-damage curve)
and the years we’re considering. You should consider different time horizons!

1 p = ModelParams(
2 house=house,
3 years=2024:2083
4 )

The next step is to create an object to hold our state of the world (SOW). We can create one like
this. In the next step, we’ll want to sample a large ensemble of SOWs.

1 sow = SOW(
2 rand(slr_scenarios),

7



3 draw_surge_distribution(),
4 draw_discount_rate()
5 )

Last, we need to define our action. For now, our action is very simple: we’re going to raise the
house to a fixed elevation. However, in the future we might have a more complex action (e.g., when
the sea level exceeds some threshold 𝑡1, raise the house by some fixed amount 𝑡2, which has two
parameters). We define our action as follows:

1 a = Action(3.0u"ft")

Finally, we have a function to run the simulation. This function takes in the model parameters,
the state of the world, and the action, and returns the NPV of the action. Please have a look at
run_sim.jl to see how this is implemented!

1 res = run_sim(a, sow, p)

-556112.770801995

3 Exploratory modeling
Now that you’ve figured out how this model works, it’s your turn to conduct some exploratory
modeling. In template.qmd, I’ve provided only the code required to load packages.

3.1 Apply the model to your site
1. Build your own house object, based on the house you’ve been using (or you can switch if

you’d like)
a. Briefly explain where you got the area, value, and depth-damage curve from
b. Plot the depth-damage curve
c. Plot the cost of raising the house to different elevations from 0 to 14 ft

2. Read in the sea-level rise data
3. Modify my code to create a function to draw samples of storm surge and the discount rate.

Explain your modeling choices!
4. Define an illustrative action, SOW, and model parameters, and run a simulation.

3.2 Large ensemble
Now that you’ve got the model working for your site, you should run a large ensemble of simulations
(explain how you interpret “large”).

1. Sample many SOWs (see below)
2. Sample a range of actions. You can do this randomly, or you can look at just a couple of

actions (e.g., 0, 3, 6, 9, 12 ft) – explain your choice.
3. Run the simulations for each SOW and action. You can use a for loop for this.
4. Create a DataFrame of your key inputs and results (see below)

Here’s how you can create a few SOWs and actions and run the simulations for each:

8

HouseElevation/src/run_sim.jl
./template.qmd


1 sows = [SOW(rand(slr_scenarios), draw_surge_distribution(), draw_discount_rate()) for _ in 1:10] # for 10 SOWs
2 actions = [Action(3.0u"ft") for _ in 1:10] # these are all the same
3 results = [run_sim(a, s, p) for (a, s) in zip(actions, sows)]

10-element Vector{Float64}:
-63415.072163965604
-61571.46857484557

-748815.3444567671
-64024.853989177456

-1.5763970830349994e6
-126711.73854035005
-566155.3249808104
-61567.0

-1.3706962666253767e6
-62037.60219033556

Here’s how you can create a dataframe of your results. Each row corresponds to one simulation,
and the columns are the inputs and outputs of the simulation.

1 df = DataFrame(
2 npv=results,
3 Δh_ft=[a.Δh_ft for a in actions],
4 slr_a=[s.slr.a for s in sows],
5 slr_b=[s.slr.b for s in sows],
6 slr_c=[s.slr.c for s in sows],
7 slr_tstar=[s.slr.tstar for s in sows],
8 slr_cstar=[s.slr.cstar for s in sows],
9 surge_�=[s.surge_dist.� for s in sows],

10 surge_�=[s.surge_dist.� for s in sows],
11 surge_�=[s.surge_dist.� for s in sows],
12 discount_rate=[s.discount_rate for s in sows],
13 )

npv Δh_ft slr_a slr_b slr_c slr_tstar slr_cstar surge_�
Float64 Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 -63415.1 3.0 47.3252 2.77396 0.00619803 2073.85 19.0175 4.46559 …
2 -61571.5 3.0 25.2424 2.2504 0.00431969 2056.68 11.1601 5.27836 …
3 -7.48815e5 3.0 30.3371 1.9704 0.000182755 2016.83 8.28125 4.7439 …
4 -64024.9 3.0 47.3252 2.77396 0.00619803 2073.85 19.0175 4.2616 …
5 -1.5764e6 3.0 49.5165 2.81352 0.00682944 2020.34 8.72202 5.52635 …
6 -1.26712e5 3.0 34.3968 2.42673 0.00390298 2071.25 22.3795 4.40446 …
7 -5.66155e5 3.0 2.65327 1.13153 -0.00407529 2068.74 34.8893 5.4438 …
8 -61567.0 3.0 23.6271 2.08615 0.00171879 2071.34 26.2871 5.5819 …
9 -1.3707e6 3.0 49.6833 2.4054 0.00294922 2077.67 23.0855 4.5868 …

10 -62037.6 3.0 46.2993 2.4202 0.00412965 2047.45 19.2936 5.96139 …

9



3.3 Analysis
Now, analyze your results. You can use scatterplots and other visualizations, or any other statistical
analyses that you think may be helpful. Remember that the goal is to understand how different
parameter values affect the success or failure of different actions.

Some questions to consider:

• When do you get the best results?
• When do you get the worst results?
• What are the most important parameters?
• If you had unlimited computing power, would you run more simulations? How many?
• What are the implications of your results for decision-making?

Oddo, P. C., Lee, B. S., Garner, G. G., Srikrishnan, V., Reed, P. M., Forest, C. E., & Keller, K.
(2017). Deep uncertainties in sea-level rise and storm surge projections: Implications for coastal
flood risk management. Risk Analysis, 0(0). https://doi.org/ghkp82

10

https://doi.org/ghkp82

	Setup
	The usual
	Load packages
	Local package

	Building the model
	House
	Sea-level rise
	Storm surge
	Discount rate
	Running a simulation

	Exploratory modeling
	Apply the model to your site
	Large ensemble
	Analysis


