
Sequential Decision Problems
Lecture

Dr. James Doss-Gollin

2024-03-04

This lecture borrows heavily from Herman et al. (2020).

Introduction
House elevation problem
Thus far, we have looked at a single static decision: how high to elevate the house. However, in
many cases, decisions are not static, but rather sequential. For example, we don’t necessarily need
to make this decision today! Instead, we could wait and see how fast local sea-levels are rising, and
then make a decision later with more information.

General dynamic decision problems
Dynamic planning problems identify policies to select actions in response to new information over
time. Policy design involves choosing the sequence, timing, and/or threshold of actions to achieve
a desired outcome. This typically involves a combination of optimal control and adaptive design.

Optimal control and reinforcement learning
Optimal control and reinforcement learning are related fields relating to the study of optimizing
sequential decision problems.

Tip

For a thorough but accessible textbook on reinforcement learning, I recommend Sutton &
Barto (2018).

Framing
In sequential decision problems, the decision maker does not need to make all decisions at once.
Instead, at each time step, the decision maker makes a decision based on the state of the system
(which may not be fully observable). In our case study, the state might include the current elevation
of the house, the current sea level, and other potential variables.

1



Mathematically, the state evolves over time according to a dynamics model, which describes how
the state changes in response to the decision maker’s actions and external factors:

x𝑡+1 = 𝑓𝑡(x𝑡, 𝑎𝑡, 𝑒𝑡+1),

where

• x𝑡 is the state at time 𝑡
• 𝑎𝑡 is the decision at time 𝑡 (e.g. whether we elevate and if so how high)
• 𝑒𝑡+1 is some forcing (e.g., the rate of sea level rise)
• 𝑓𝑡 is assumed deterministic, but it can evolve over time.

Reward
A key concept in sequential decision problems is that at each time step, the decision maker gets
some immediate feedback. This is often called reward, 𝑅. The reward 𝑅𝑡+1 (indices by convention)
depends on the state at time 𝑡, the action at time 𝑡, and the forcing at time 𝑡.
In our house elevation problem, the reward might be the cost of flood insurance and the cost of
elevating (which will often be zero).

Policy
The decision maker’s strategy for choosing actions is called a policy. The policy is a deterministic
(or stochastic) function that maps states to actions. We’ll focus here on discrete time problems,
although continuous time problems are also well-studied in some domains.

Figure 1: A sketch of the reinforcement learning problem.

Expected future rewards
A central idea of optimal control problems is to maximize the expected sum of future rewards.1 The
basic idea is that there might be actions that give a low reward now, but that lead to high rewards
in the future. In our case study, an illustration would be spending a lot of money to elevate the

1This is a slight simplification; equation 1 of Herman et al. (2020) gives a more general form.

2



house now, but then not having to pay as much for flood insurance in the future. Future rewards
are usually discounted (as we have seen); this can be done either in the cost function or in the
reward function.

This leads naturally to an important concept in reinforcement learning: value. The value of a
state is the expected sum of future rewards that can be obtained from that state, assuming the
decision maker follows a particular policy. The value of a state-action pair is the expected sum of
future rewards that can be obtained from that state, assuming the decision maker takes a particular
action and then follows a particular policy.

Solution methods
There are many methods for solving sequential decision problems! Here, we’ll focus on a few
examples from Herman et al. (2020). This is not by any means a comprehensive list.

On Wednesday we’ll read a paper that compares what we call here open loop (they call it “intertem-
poral open loop control”) and dynamic policy search.

Open loop
Open loop control solves for all actions at once. The result is a vector of actions corresponding to
each time step.

The primary advantage of open loop control is that it’s very easy to execute the policy – no
further analysis, updating, or optimization is needed. The primary disadvantage is that it’s not
adaptive – it doesn’t take into account new information that might be available later. It can also
be computationally challenging because it requires solving a lot of decision variables (each time
step is a decision variable) and they are not independent (if I elevate my house in 2030, I probably
don’t want to elevate it in 2031).

Dynamic programming
There are many variations of dynamic programming, but the most commonly applied is stochastic
dynamic programming, in which the value function 𝑄 for each state at time 𝑡 is estimated from the
recursive Bellman equation:

𝑄𝑡(x𝑡) = min
𝑎𝑡

{𝑅𝑡 + 𝛾𝑄𝑡+1(x𝑡+1)} .

where 𝛾 is the discount factor.

This problem is typically discretized and solved using a backward induction algorithm. In other
words, a discrete number of states and actions are considered. The discrete state transition function
gives you the probability of transitioning from one state to another, given an action. A very rough
solution approach is:

1. Calculate the value function for the each step in last time step, 𝑄𝑇 (𝑥1
𝑇 ), 𝑄𝑇 (𝑥2

𝑇 ), ….
2. For each time step 𝑡 = 𝑇 − 1, 𝑇 − 2, … , 1, calculate the value function for each state 𝑥𝑡 using

the Bellman equation:
1. For each state 𝑥𝑡, calculate the value of each action 𝑎𝑡 as the reward plus the discounted

expected value of the next state
2. Choose the action that maximizes the value function

3



3. The value function for the state is the value of the action that maximizes the value
function

An advantage of methods like SDP is that they can provide exact solutions to the problem, con-
ditional on the model and discretization. A disadvantage is that often very strong assumptions
are required to discretize the problem and make it tractable. SDP also suffers from the “curse
of dimensionality” because as the number of states and actions increases, the number of possible
state-action pairs increases exponentially.

Policy search
Policy search assumes a specific functional form for a policy 𝜋 with parameters 𝜃 such that 𝑎𝑡 =
𝑓(x𝑡, 𝜃). The goal is to find the parameters 𝜃 that maximize the expected sum of future rewards.

Common choices of 𝑓 include linear decision rules, radial basis functions, binary trees, and neural
networks. A primary advantage of policy search is that it can be very flexible and adaptive, and
can be used with simulation-optimization frameworks. A primary disadvantage is that it can
be computationally expensive and can require a lot of data to estimate the parameters.

In our case study, there are many different ways to parameterize our decision rule. Two options
suggested by (garnergarner_slrise:2018?) are:

1. define a “buffer height” as the minimum tolerable elevation of the house relative to the mean
sea level and a “freeboard height” so that when the buffer height is exceeded, the house is
elevated to be BH + FH above the mean sea level.

2. Estimate FH and BH based on the local slope and acceleration of the sea-level

However, very complex control rules using deep neural networks are also used (e.g., in video game
playing).

Discussion
Like everything we’ve seen in this class, we are using a model to represent the real world, but the
model isn’t the real world and we should take this into account when designing and interpreting
our optimization.

Flexibility
The financial theory of real options defines “the right, but not obligation” to take a particular
action in the future. For example, if I purchase the right to buy Apple stocks in 1 year at price 𝑋,
I can choose to buy the stocks if the price is higher than 𝑋, but I don’t have to buy them if the
price is lower than 𝑋. This is a real option, and it has value.

This has motivated study of options in engineering and policy design. It turns out that creating
flexibility in decision making can be very valuable, but it’s not always easy to generate designs
that are naturally flexible. An example we’ll see on Friday gives a simple example: build a parking
garage to a few floors, build it to many floors, or build a few floors but extra-strong so we can add
levels in the future if needed? (Neufville et al., 2006).

4



References
Herman, J. D., Quinn, J. D., Steinschneider, S., Giuliani, M., & Fletcher, S. (2020). Climate

adaptation as a control problem: Review and perspectives on dynamic water resources planning
under uncertainty. Water Resources Research, e24389. https://doi.org/10.1029/2019wr025502

Neufville, R. de, Scholtes, S., & Wang, T. (2006). Real Options by Spreadsheet: Parking Garage
Case Example. Journal of Infrastructure Systems, 12(2), 107–111. https://doi.org/10.1061/
(asce)1076-0342(2006)12:2(107)

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An Introduction (Second Edition).
Cambridge, Massachusetts; London, England: MIT Press.

5

https://doi.org/10.1029/2019wr025502
https://doi.org/10.1061/(asce)1076-0342(2006)12:2(107)
https://doi.org/10.1061/(asce)1076-0342(2006)12:2(107)

	Introduction
	House elevation problem
	General dynamic decision problems

	Optimal control and reinforcement learning
	Framing
	Reward
	Policy
	Expected future rewards

	Solution methods
	Open loop
	Dynamic programming
	Policy search

	Discussion
	Flexibility

	References

