CEVE 421/521 Schedule

NoteNote

Check the page for each reading to see discussion questions. You will often be encouraged to focus only on part of relevant papers.

Final Project: Deliverables are due throughout the semester (see schedule below).

CEVE 521 students: You will lead one Paper Discussion session. See Graduate Seminar Requirements.

Week Date What
1 Mon., Jan. 12 Lecture: Intro to Climate Risk Management [ ]
Wed., Jan. 14 Topical Discussion: Frank (2022) and Crawford (2025)
Fri., Jan. 16 Lab 1: Julia Setup & Hello World
2 Mon., Jan. 19 Martin Luther King, Jr. Day (No Class)
Wed., Jan. 21 Lecture: Hazard, Exposure, Vulnerability [ ]
Fri., Jan. 23 Lab 2: Intro to iCOW
3 Mon., Jan. 26 Lecture: Climate Variability, Extremes, and Change [ ]
Wed., Jan. 28 Paper Discussion: Seneviratne et al. (2021)
Fri., Jan. 30 Lab 3: Sea-Level Rise Scenarios with BRICK / Project: Topic Proposal Due
4 Mon., Feb. 2 Lecture: Uncertainty & Monte Carlo [ ]
Wed., Feb. 4 Paper Discussion: Zarekarizi et al. (2020)
Fri., Feb. 6 Lab 4: Monte Carlo Hazard Modeling
5 Mon., Feb. 9 Lecture: Risk Metrics (EAD, VaR, CVaR) [ ]
Wed., Feb. 11 Lab 5: Probabilistic Risk Analysis
Fri., Feb. 13 No Class
6 Mon., Feb. 16 Exam 1 (Covers Module 1)
Wed., Feb. 18 Lecture: Valuation & Benefit-Cost Analysis [ ]
Fri., Feb. 20 Paper Discussion: Arrow et al. (2013)
7 Mon., Feb. 23 Lecture: Optimal Static Decisions [ ]
Wed., Feb. 25 Paper Discussion: van Dantzig (1956)
Fri., Feb. 27 Lab 6: Simulation-Optimization / Project: Memo 1 Due
8 Mon., Mar. 2 Lecture: Sensitivity & Value of Information [ ]
Wed., Mar. 4 Paper Discussion: Runge et al. (2011)
Fri., Mar. 6 Lab 7: Value of Partial Information
9 Mon., Mar. 9 Lecture: Trade-offs & Values [ ]
Wed., Mar. 11 Paper Discussion: Daw et al. (2015)
Fri., Mar. 13 Exam 2 (Covers Module 2)
Mar. 16-20 Spring Break
10 Mon., Mar. 23 Lecture: Robustness & Deep Uncertainty [ ]
Wed., Mar. 25 Paper Discussion: Lempert & Schlesinger (2000) and Schneider (2002)
Fri., Mar. 27 Lab 8: Robustness Metrics / Project: Memo 2 Due
11 Mon., Mar. 30 Lecture: Exploratory Modeling & Scenario Discovery [ ]
Wed., Apr. 1 Paper Discussion: Bankes (1993)
Fri., Apr. 3 Lab 9: Scenario Discovery
12 Mon., Apr. 6 Lecture: Sequential Decision Making [ ]
Wed., Apr. 8 Paper Discussion: Garner & Keller (2018)
Fri., Apr. 10 Lab 10: Real Options & Dynamic Policy Search / Project: Memo 3 Due
13 Mon., Apr. 13 Lecture: Multi-Objective Optimization [ ]
Wed., Apr. 15 Paper Discussion: Kasprzyk et al. (2013)
Fri., Apr. 17 Lab 11: Pareto Fronts / Project: Slides Due
14 Mon., Apr. 20 Final Project Presentations (Teams 1 & 2)
Wed., Apr. 22 Final Project Presentations (Teams 3 & 4)
Fri., Apr. 24 Final Project Presentations (Teams 5 & 6)

References

Arrow, K., Cropper, M., Gollier, C., Groom, B., Heal, G., Newell, R., et al. (2013). Determining benefits and costs for future generations. Science, 341(6144), 349–350. https://doi.org/10.1126/science.1235665
Bankes, S. (1993). Exploratory modeling for policy analysis. Operations Research, 41(3), 435–449. https://doi.org/10/c7rgcr
Crawford, S. (2025, December 5). Floods and Storms Are Ravaging the Jersey Shore. Why Do We Keep Building It Back? Retrieved December 5, 2025, from https://www.rollingstone.com/culture/culture-features/floods-storms-jersey-shore-beach-rebuilding-1235477927/
van Dantzig, D. (1956). Economic Decision Problems for Flood Prevention. Econometrica, 24(3), 276–287. https://doi.org/10.2307/1911632
Daw, T. M., Coulthard, S., Cheung, W. W. L., Brown, K., Abunge, C., Galafassi, D., et al. (2015). Evaluating taboo trade-offs in ecosystems services and human well-being. Proceedings of the National Academy of Sciences, 112(22), 6949–6954. https://doi.org/10.1073/pnas.1414900112
Frank, T. (2022, August 22). Bold New Jersey Shore Flood Rules Could Be Blueprint for Entire U.S. Coast. Scientific American. Retrieved from https://www.scientificamerican.com/article/bold-new-jersey-shore-flood-rules-could-be-blueprint-for-entire-u-s-coast/
Garner, G. G., & Keller, K. (2018). Using direct policy search to identify robust strategies in adapting to uncertain sea-level rise and storm surge. Environmental Modelling & Software, 107, 96–104. https://doi.org/10.1016/j.envsoft.2018.05.006
Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. Environmental Modelling & Software, 42, 55–71. https://doi.org/10.1016/j.envsoft.2012.12.007
Lempert, R. J., & Schlesinger, M. E. (2000). Robust strategies for abating climate change. Climatic Change, 45(3–4), 387–401. https://doi.org/10.1023/A:1005698407365
Runge, M. C., Converse, S. J., & Lyons, J. E. (2011). Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biological Conservation, 144(4), 1214–1223. https://doi.org/10.1016/j.biocon.2010.12.020
Schneider, S. H. (2002). Can we estimate the likelihood of climatic changes at 2100? Climatic Change, 52(4), 441–451. https://doi.org/http://dx.doi.org/10.1023/A:1014276210717
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., et al. (2021). Weather and climate extreme events in a changing climate. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Book section, Cambridge, UK; New York, NY, USA: Cambridge University Press. https://doi.org/10.1017/9781009157896.013
Zarekarizi, M., Srikrishnan, V., & Keller, K. (2020). Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nature Communications, 11(1, 1), 5361. https://doi.org/10.1038/s41467-020-19188-9